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Abstract

Motivation: Transcription factors (TFs) bind to specific DNA sequences, TF motifs, in cis-

regulatory sequences and control the expression of the diverse transcriptional programs encoded

in the genome. To understand how TFs control gene expression it is essential to model TF binding.

TF motif information can help to interpret the exact role of individual regulatory elements, for

instance to predict the functional impact of non-coding variants.

Results: Here we present GimmeMotifs, a comprehensive computational framework for TF motif

analysis. Included with GimmeMotifs is a non-redundant database of clustered motifs. Compared

to other motif databases, this collection of motifs shows competitive performance in discriminating

bound from unbound sequences. Using our de novo motif discovery pipeline we find large

differences in performance between de novo motif finders on ChIP-seq data. Using an ensemble

method such as implemented in GimmeMotifs will generally result in improved motif identification

compared to a single motif finder. Finally, we demonstrate maelstrom, a new ensemble method that

enables comparative analysis of TF motifs between multiple high-throughput sequencing

experiments, such as ChIP-seq or ATAC-seq. Using a collection of ~200 H3K27ac ChIP-seq data

sets we identify TFs that play a role in hematopoietic differentiation and lineage commitment. In

conclusion, GimmeMotifs is a fully-featured and flexible framework for TF motif analysis.

Availability and Implementation: GimmeMotifs is implemented in Python and contains both

command-line tools as well as a Python API. It is freely available at: https://github.com/

vanheeringen-lab/gimmemotifs.

Contact: Simon van Heeringen (s.vanheeringen@science.ru.nl)

Supplementary Information: Supplementary information is available at https://github.com/

vanheeringen-lab/gimme-analysis.

https://github.com/vanheeringen-lab/gimmemotifs
https://github.com/vanheeringen-lab/gimmemotifs
https://github.com/vanheeringen-lab/gimme-analysis
https://github.com/vanheeringen-lab/gimme-analysis


Introduction
The regulatory networks that determine cell and tissue identity are robust, yet remarkably flexible.

Transcription factors (TFs) control the expression of genes by binding to their cognate DNA

sequences, TF motifs, in cis-regulatory elements [1]. To understand how genetic variation affects

binding and to elucidate the role of TFs in regulatory networks we need to be able to accurately

model binding of TFs to the DNA sequence.

The specificity of DNA-binding proteins can be modeled using various representations [2]. One of

the most widely adopted is the position frequency matrix (PFM). This matrix, a TF motif, contains

(normalized) frequencies of each nucleotide at each position in a collection of aligned binding sites.

These PFMs can be derived from high-throughput experiments such as Chromatin

Immunoprecipitation followed by sequencing (ChIP-seq) [3,4,5,6], HT-SELEX [7] or Protein Binding

Microarrays (PBMs) [8]. Through straightforward transformations a PFM can be expressed as a

weight matrix, using log likelihoods, or information content, using the Kullback-Leibler divergence.

We previously published GimmeMotifs, a de novo ChIP-seq motif discovery pipeline [9]. Here, we

present a new and updated version of the GimmeMotifs software. Compared to the previous

version, it now contains a whole range of Python modules and command-line tools to provide an

comprehensive framework for transcription factor motif analysis. Amongst other possibilities it can

be used to perfom de novo motif analysis, cluster and visualize motifs and to calculate enrichment

statistics. A new ensemble method, maelstrom, can be used to determine differential motif activity

between multiple different conditions, such as cell types or treatments. We illustrate the

functionality of GimmeMotifs using three different examples.

Findings
GimmeMotifs includes several different modules (Table 1), that can all be used either via a

command-line tool or using the Python API. In the next sections we illustrate the functionality using

three different examples.



Table 1: Command line tools included with GimmeMotifs. All

these tools can also be used via the GimmeMotifs API.

Command Purpose

gimme motifs Find de novo motifs

gimme maelstrom Identify differential motif activity

gimme scan Scan for known motifs

gimme roc Calculate perfomance metrics

gimme match Find closest match in database

gimme cluster Cluster motifs

gimme background Generate background sequences

gimme logo Create motif logo image

Benchmark of transcription factor motif databases

A variety of transcription factor (TF) motif databases have been published based on different data

sources. One of the most established is JASPAR, which consists of a collection of non-redundant,

curated binding profiles [10]. The JASPAR website contains many other tools and the underlying

databases are also accessible via an API [11]. Other databases are based on protein binding

micorarrays [8], HT-SELEX [7] or ChIP-seq profiles [3,4,5,6]. CIS-BP integrates many individual

motif databases, and includes assignments of TFs to motifs bases based on DNA binding domain

homology [12].

For the purpose of motif analysis, it is beneficial to have a database that is non-redundant (i.e.,

similar motifs are grouped together), yet as complete as possible (i.e., covers a wide variety of

TFs). To establish a quantitative measure of database quality, we evaluated how well motifs from

different databases can classify ChIP-seq peaks from background sequences. In this benchmark,

we used randomly selected genomic sequence as background. The following databases were

included in our comparison: JASPAR 2018 vertebrate [10], SwissRegulon [13], Homer [6],

Factorbook [3], the ENCODE motifs from Kheradpour et al. [4], HOCOMOCO [5], the RSAT

clustered motifs [14] and the IMAGE motif database created by Madsen et al. [15]. We compared

these databases to the non-redundant vertebrate motif database included with GimmeMotifs (v5.0,

see Methods).



Figure 1: Benchmark of transcription factor motif databases. A) Motif-based classification of

binding sites for 294 TFs from the ReMap ChIP-seq database. For all TFs 5,000 peaks were

compared to background regions using each motif database. The boxplot shows the the ROC AUC

of the best motif per database for all TFs. Every point in this plot is based on one TF ChIP-seq

peak set. B) Recall at 10% FDR of motif databases compared to the GimmeMotifs vertebrate motif

database (v5.0). The same data is used as in A). The X-axis represents the recall for the different

databases, the Y-axis represents the recall for the GimmeMotifs vertebrate database. Differences

of more than 0.025 are marked blue, and less then -0.025 red.

As a reference data set we downloaded all ChIP-seq peaks from ReMap 2018 [16], and selected

the TFs with at least 1,000 peaks. When there were more than 5,000 peaks for a TF we randomly

selected 5,000 peaks for the analysis.

We then evaluated the eight motif databases to test how well they could discriminate TF peaks

from random genomic sequences using the GimmeMotifs tool gimme roc . This tool calculates a

range of performance metrics to compare motif quality. For each TF and motif database

combination we selected the single best performing motif, depending on the metric under

consideration.

Figure 1A shows distribution of the ROC AUC (area under the curve for the Receiver Operator

Curve) of the best motif per database for all 294 transcription factors in a box plot. The ROC curve

plots the fraction of true positives (TPR, or sensitivity) against the fraction of false positives (FPR,

or 1 - specificity). The ROC AUC value will generally range from 0.5 (no improvement on random

guessing) to 1.0 (perfect classifier). As Figure 1A illustrates, the collection of TFs generally shows a

wide distribution of ROC AUCs. For some factors, such as ELK1, CTCF, CBFB and MYOD1, peaks

are relatively easy to classify using a single PFM motif. Other factors do not have peaks with a

consistently enriched motif, or do not contain a sequence-specific DNA-binding domain, such as

EP300 or CDK2 for example.



The difference in maximum ROC AUC between databases is on average not very large, with a

mean maximum difference of 0.05. The largest difference (~0.24) is found for factors that were not

assayed by ENCODE, such as ONECUT1, SIX2 and TP73, and are therefore not present in the

Factorbook motif database. Unsurprisingly, the databases that were based on motif collections of

different sources (ENCODE, IMAGE, RSAT and GimmeMotifs) generally perform best. It should be

noted that, for this task, using motif databases based on motif identification from ChIP-seq peaks is

in some sense “overfitting”, as the motifs in these databases were inferred from highly similar data.

While the ROC AUC is often used to compare the trade-off between sensitivity versus specificity, in

this context it is not the best metric from a biological point of view. An alternative way of measuring

performance is evaluating the recall ( i.e. how many true peaks do we recover) at a specific false

discovery rate. This is one of the criteria that has been used by the ENCODE DREAM challenge

for evaluation [17]. Figure 1B shows scatterplots for the recall at 10% FDR for all motif databases

compared to the clustered, non-redundant databases that is included with GimmeMotifs. This

database shows better performance than most other databases using this benchmark. The non-

redundant RSAT database, which was created in a very similar manner [14], scores comparably.

These results illustrate how gimme roc  can be used for evaluation of motifs. The choice of a motif

database can greatly influence the results of an analysis. The default database included with

GimmeMotifs shows good performance on the metric evaluated here. However, this analysis

illustrates only one specific use case of application of a motif database. In other cases well-curated

databases such as JASPAR can be beneficial, for instance when linking motifs to binding proteins.

Any of these databases can be easily used in all GimmeMotifs tools.

Large-scale benchmark of de novo motif finder

performance on ChIP-seq peaks

It has been noted that there is no de novo motif prediction algorithm that consistently performs well

across different data sets [18]. New approaches and algorithms for de novo motif discovery

continue to be published, however, many of them are not tested on more than a few datasets.

Benchmarks that have been published since Tompa et al. [19,20] typically have tested only a few

motif finders or used only a few datasets.

Here, we used the GimmeMotifs framework as implemented in gimme motifs  to benchmark 14

different de novo motif finders. To evaluate the different approaches, we downloaded 495 peak files

for 270 proteins from ENCODE [21] and selected the 100bp sequence centered on the summit of

top 5,000 peaks. These will be the peaks most likely to contain the primary TF motif, and should

provide a straightforward test-case for the de novo motif finders. Ranking and selecting peaks in

this manner is a widely adopted practice and we use this procedure also for our benchmark.



However, when analyzing ChIP-seq data in detail, it might be preferable to analyze the full

complement of peaks instead of only a selection of top peaks.

Of the top peaks, half were randomly selected as a prediction set and the other half was used for

evaluation. If the prediction set was larger than 1,000 peaks, we used only 1,000 peaks for de novo

motif prediction, as the running time will become prohibitive for some tools. As a background set

we selected regions of the same length flanking the original peaks. This will account for sequence

bias according to genomic distribution. For most motif finders we used default parameters, except

for motif width and strand. We used all motif widths from 6 to 20 with a step size of 2, which can be

specified in gimme motifs  by setting analysis  to xl . Where possible, we used both forward

and reverse strand for analysis. The specific parameters used for the individual motif finders are

included in the Methods. To assess the performance, we calculated two metrics, the ROC AUC and

the recall at 10% FDR. These metrics were based on the score of the best motif match per

sequence, with a log-odds score based on a background with equal distribution of nucleotides. For

each de novo motif finder we selected the best scoring motif, based on the metric under

evaluation. Figure 2A shows the distribution of the ROC AUC scores over all ENCODE peaks in a

boxplot, ordered by the mean ROC AUC. The ROC AUC is distributed between 0.58 and 0.98, with

a mean of 0.75. All proteins that have low ROC AUC are not sequence-specific transcription factors

such as POL2, TAF7 and GTF2B, the PRC2-subunit SUZ12 and the H3K9 methyltransferase

SETDB1. The factors with the highest ROC AUC are CTCF and members of the cohesin complex,

SMC3 and RAD21, that bind at CTCF sites.

Figure 2: Benchmark of de novo motif finders. A) Comparison of the ROC AUC of the best motif of

each motif finder. The boxplot shows the best motif per peak set of 495 peaks for 270 proteins from

ENCODE. The best motif from all motif finders is indicated as ‘Best’. B) Comparison of the best

motif per motif finder compared to the best overall motif for each data set. Plotted is the difference

in recall compared to the best motif. Recall is calculated at 10% FDR. C) The relative motif rank as

a function of the motif quality. Rank is the mean overall rank of three metrics (ROC AUC, recall at

10% FDR and MNCP).



Generally, the ROC AUC distribution of all evaluated motif finders is very similar. However, a few

outliers can be observed. Trawler and Posmo show an overall lower distribution of ROC AUC

scores. Compared to the ROC AUC scores of the next best program, GADEM, this is significant (p

< 0.01, Wilcoxon signed-rank). Selecting the best motif for each experiment, as the ensemble

method implemented in GimmeMotifs would do, results in a ROC AUC distribution that is

significantly higher than the best single method, BioProspector (p < 1e-21, Wilcoxon signed-rank).

As stated in the previous section, the ROC AUC is not the best measure to evaluate motif quality.

Therefore, we selected for every TF peak set the best overal motif on the basis of the recall at 10%

FDR. We then plotted the difference between this best overall motif and the best motif from each

individual de novo approach (Fig. 2B). For this figure, we used only the data sets where at least

one motif had a recall higher than 0 at 10% FDR.

In line with previous results [18], there is no single tool that consistently predicts the best motif for

each transcription factor. However, the motifs predicted by BioProspector, MEME and Homer are,

on basis of this metric, consistently better than motifs predicted by other methods. In 75% of the

cases, the motif predicted by BioProspector has a difference in recall smaller than 0.026 compared

to the best overall motif. In this benchmark, four programs (Trawler, Improbizer, Posmo and

Weeder) generally perform worse than average, with a mean decrease in recall of 0.11 to 0.17, as

compared to the best motif. In addition, these programs tend to have a much more variable

performance overall.

In the benchmark we ran MEME in two different modes (MEME vs. MEMEW in Fig. 2B). For the

first mode we used MEME with different motif widths, with 10 motifs being reported per individual

width. From this collection of motifs with different widths, the best performing motif was reported.

Alternatively, we used MEME with the minw  and maxw  options. Here, the best motifs are selected

by MEME itself. In the benchmark reported here, running MEME with various motif widths gives

better results, as the both recall at 10% FDR as well the ROC AUC are higher for MEME and

compared to MEMEW. Of the best performing algorithms, both MEME and BioProspector were not

specifically developed for ChIP-seq data, however, they consistently outperform most methods

created for ChIP-seq data. Of the ChIP-seq motif finders Homer consistently shows good

performance.

Finally, to gain further insight into de novo motif finder performance, we stratified the ChIP-seq

datasets by motif “quality”. We divided the transcription factors into five bins on basis of the ROC

AUC score of the best motif. For each bin we ranked the tools on basis of the average of three

metrics (ROC AUC, recall at 10% FDR and MNCP [22]). The results are visualized as a heatmap in

Figure 2C. From this visualization, it is again clear that BioProspector, MEME and Homer produce

consistently high-ranking motifs, while the motifs identified by Trawler, Posmo, GADEM and

Improbizer generally have the lowest rank. Interestingly, for some motif finders, there is a relation

between motif presence and the relative rank. Weeder, XXMotif and MDmodule yield relatively



high-ranking motifs when the ROC AUC of the best motif for the data set is low. On the other hand,

ChIPMunk shows the opposite pattern. Apparently this algorithm works well when a motif is present

in a significant fraction of the data set.

These results illustrate that motif finders need to be evaluated along a broad range of data sets

with different motif presence and quality. Another interesting observation is that this ChIP-seq

benchmark shows a lower-than-average performance for Weeder, which actually was one of the

highest scoring in the Tompa et al. benchmark. It should be noted that our metric specifically

evaluates how well de novo motif finders identify the primary motif in the context of high-scoring

ChIP-seq peaks. It does not evaluate other aspects that might be important, such as the ability to

identify low-abundant or co-factor motifs. Furthermore, with ChIP-seq data there are usually

thousands of peaks available. This allows for other algorithms than those that work well on a few

sequences. Interestingly, the original MEME shows consistently good performance, although the

running time is longer than most other tools. On the basis of this analysis, BioProspector should be

the top pick for a program to identify primary motifs in ChIP-seq data. However, an ensemble

program such as GimmeMotifs will report high-quality motifs more consistently than any single tool.

Differential motif analysis of hematopoietic

enhancers identifies cell type-specific regulators

While many motif scanners and methods to calculate enrichment exist, there are few methods to

compare motif enrichment or activity between two or more data sets. The CentriMo algorithm from

the MEME suite implements a differential enrichment method to compare two samples [23]. Other

approaches, such as MARA [24,25] and IMAGE [15], are based on linear regression. Here we

present the maelstrom algorithm that integrates different methods to determine motif relevance or

activity in an ensemble approach (Fig. 3A).

To demonstrate the utility of maelstrom we identified motif activity based on enhancers in

hematopoietic cells. We downloaded 69 human hematopoietic DNaseI experiments

(Supplementary Table S1), called peaks, and created a combined peak set as a collection of

putative enhancers. In addition we downloaded 193 hematopoietic H3K27ac ChIP-seq

experiments, mainly from BLUEPRINT [26] (Supplementary Table S1). We determined the number

of H3K27ac reads per enhancer (Supplementary Table S2). After log2 transformation and scaling,

we selected the 50,000 most dynamic peaks. Figure 3B shows the correlation of the H3K27ac

enrichment in these 50,000 enhancers between cell types. For this plot, replicates were combined

by taking the mean value and all experiments corresponding to treated cells were removed. We

can observe six main clusters 1) non-hematopoietic cells 2) neutrophilic cells, 3) monocytes,

macrophages and dendritic cells, 4) megakaryocytes and erythroblasts, 5) B cells 6) T cells and

natural killer (NK) cells. We can conclude that the H3K27ac profile within this enhancer set

recapitulates a cell type-specific regulatory signal.



Figure 3: Predicting TF motif activity using maelstrom. A) A schematic overview of the maelstrom

ensemble method. B) Heatmap of the correlation of H3K27ac signal in hematopoietic enhancers.

We counted H3K27ac ChIP-seq reads in 2kb sequences centered at DNase I peaks. Counts were

log2-transformed and scaled and replicates were combined by taking the mean value. This

heatmap shows the Pearson r, calculated using the 50,000 most dynamic peaks. C) Selection of

the results of running gimme maelstrom  on the 50,000 most dynamic hematopoietic enhancers.

Shown is the motif activity of four motifs associated with factors that are known to play a role in



hematopoietic cells: SPI1 (PU.1), CEBP, RUNX and GATA1. The visualization shows a schematic,

simplified cell lineage tree. The color and the line thickness represent the motif activity, where the

value corresponds to the log10 of the p-value of the rank aggregation. For high-ranking motifs (red)

-log10(p-value) is shown, while for low ranking motifs (blue) log10(p-value) of the reversed ranking

is shown. D) Motif activity, as in C, of two motifs of factors for which the exact function in these cell

types is currently unknown.

To determine differential motif activity from these dynamic enhancers we used maelstrom. We

combined Lasso, Bayesian ridge regression, multi-class regression using coordinate descent [27]

and regression with boosted trees [28]. The coefficients or feature importances were ranked and

combined using rank aggregation [29]. A p-value was calculated for consistently high ranking and

consistently low ranking motifs. A selection of the results is visualized in Figure 3C. The full results

are available as Supplementary File S1 and on Zenodo (10.5281/zenodo.1491482).

Two of the most signicant motifs are SPI1 (PU.1) and CEBP (Fig. 3C). The motif activity for SPI1 is

high in monocytes and macrophages, consistent with its role in myeloid lineage commitment [30].

The CEBP family members are important for monocytes and granulocytic cells [31], and show a

high motif activity in neutrophils and monocytes. Other strong motifs include RUNX for T cells and

NK cells and GATA1 for erythroid cells (Fig. 3C).

We identified a high activity for motifs representing the ZEB1 and Snail transcription factors (Fig.

3D). The Snail transcription factors play an important role in the epithelial-to-mesenchymal

transition (EMT), and their role in hematopoietic cells is less well-described. However, recently

Snai2 and Snai3 were found to be required to generate mature T and B cells [32,33] in mice. ZEB1

is expressed in T cells and represses expression of IL-2 [34], as well as other immune genes such

as CD4 [35] and GATA3 [36]. ZEB1 knockout mice exhibit a defect in thymocyte development [37].

Together, this suggests that these TFs could play an important role in the hematopoietic lineage.

Finally, an interesting observation is the predicted motif activity of NANOG in endothelial cells (Fig.

3D). NANOG is expressed in embryonic stem cells and is essential for maintenance of pluripotency

[38]. However, NANOG is indeed also expressed in endothelial cells and has been shown to play a

role in endothelial proliferation and angiogenesis [39].

https://doi.org/10.5281/zenodo.1491482




Figure 4: Predicting TF motif activity using maelstrom. Results of running gimme maelstrom  on

the 50,000 most dynamic hematopoietic enhancers. The motif activity of the top 78 motifs (absolute

motif activity >= 5) is visualized in a heatmap. The color represents the reported motif activity,

where the value corresponds to the log10 of the p-value of the rank aggregation. For high-ranking

motifs (red) -log10(p-value) is shown, while for low ranking motifs (blue) log10(p-value) of the

reversed ranking is shown.

In addition to the described examples, we identified a large compendium of TF motifs that display

differential activity in the hematopoeitic lineage (Fig. 4). This demonstrates that gimme maelstrom

can be used to analyze complex, multi-dimensional data sets such as this large-scale collection of

hematopoietic enhancers. Especially in experiments where there are multiple conditions or time

points that need to be compared, maelstrom  provides a powerful method to determine differential

transcription factor motif activity.

Methods

GimmeMotifs

Implementation

GimmeMotifs is implemented in Python, with the motif scanning incorporated as a C module. The

software is developed on GitHub (https://github.com/vanheeringen-lab/gimmemotifs/) and

documentation is available at https://gimmemotifs.readthedocs.io. Functionality is covered by unit

tests, which are run through continuous integration. GimmeMotifs can be installed via bioconda 

[40], see https://bioconda.github.io/ for details. All releases are also distributed through PyPi [41]

and stably archived using Zenodo [42]. For de novo motif search, 14 different external tools are

supported (Table 2). All of these are installed when conda is used for installation. By default, 

genomepy is used for genome management [43]. In addition, GimmeMotifs uses the following

Python modules: numpy [44], scipy [45], scikit-learn, scikit-contrib-lightning [27], seaborn [46],

pysam [47,48], xgboost [28] and pandas. In addition to the command line tools, all GimmeMotifs

functionality is available through a Python API.

De novo motif prediction pipeline

Originally, GimmeMotifs was developed to predict de novo motifs from ChIP-seq data using an

ensemble of motif predictors [9]. The tools currently supported are listed in Table 2. An input file

(BED, FASTA or narrowPeak format) is split into a prediction and validation set. The prediction set

is used to predict motifs, and the validation set is used to filter for significant motifs. All significant

motifs are clustered to provide a collection of non-redundant de novo motifs. Finally, significant

clustered motifs are reported, along with several statistics to evaluate motif quality, calculated using

https://github.com/vanheeringen-lab/gimmemotifs/
https://gimmemotifs.readthedocs.io
https://bioconda.github.io/
https://github.com/simonvh/genomepy


the validation set. These evaluation metrics include ROC AUC, distribution of the motif location

relative to the center of the input (i.e., the ChIP-seq peak summit) and the best match in a

database of known motifs.

Table 2: External de novo motif prediction tools supported

by GimmeMotifs. The version shown is the version string

reported by the software. If the version is unknown, the

date when the tool was added to the GimmeMotifs

repository is shown.

Name Version Citation

AMD Unknown (2012-11-21) [49]

BioProspector 4/15/04 [50]

ChIPMunk V7 10012017 [51]

GADEM v1.3.1 [52]

HMS Unknown (2012-11-23) [53]

Homer 2 [6]

Improbizer Unknown (2010-10-01) [54]

MDmodule Unknown (2010-07-29) [55]

MEME 4.6.0 [56]

MotifSampler 3.2 [57]

Posmo May-19-2011 [58]

Trawler 2.0 [59]

Weeder 2.0 [60]

XXmotif 1.6 [61]

Motif activity by ensemble learning: maelstrom

GimmeMotifs implements eight different methods to determine differential enrichment of known

motifs between two or more conditions. In addition, these methods can be combined in a single

measure of motif activity using rank aggregation. Four methods work with discrete sets, such as

different peak sets or clusters from a K-means clustering. The hypergeometric test uses motif

counts with an empirical motif-specific FPR of 5%. All other implemented methods use the z-score

normalized PFM log-odds score of the best match.

https://github.com/JiantaoShi/AMD
http://ai.stanford.edu/~xsliu/BioProspector/
http://autosome.ru/chipmunk/
https://www.niehs.nih.gov/research/resources/software/biostatistics/gadem/index.cfm
https://dx.doi.org/10.1093/nar/gkp1180
http://homer.ucsd.edu/homer/motif/
https://users.soe.ucsc.edu/~kent/improbizer/improbizer.html
https:/dx.doi.org/10.1038/nbt717
http://meme-suite.org/
http://bioinformatics.intec.ugent.be/MotifSuite/motifsampler.php
https://dx.doi.org/10.1093/nar/gkr1135
https://trawler.erc.monash.edu.au/
http://www.beaconlab.it/modtools
https://github.com/soedinglab/xxmotif


To combine different measures of motif significance or activity into a single score, ranks are

assigned for each individual method and combined using rank aggregation based on order

statistics [29]. This results in a probability of finding a motif at all observed positions. We use a

Python implemention based on the method used in the R package RobustRankAggreg [62]. The

rank aggregation is performed twice, once with the ranks reversed to generate both positively and

negatively associated motifs.

The hypergeometric test is commonly used to calculate motif enrichment, for instance by Homer 

[6]. In GimmeMotifs, motifs in each cluster are tested against the union of all other clusters. The

reported value is -log10(p-value) where the p-value is adjusted by the Benjamini-Hochberg

procedure [63].

Using the non-parametric Mann-Whitney U test, GimmeMotifs tests the null hypothesis that the

motif log-odds score distributions of two classes are equal. For each discrete class in the data,

such as a cluster, it compares the score distributions of the class to the score distribution of all

other classes. The value used as activity is the -log10 of the Benjamini-Hochberg adjusted p-value.

The two other methods are classification algorithms: random forest using scikit-learn and a large-

scale multiclass classifier using block coordinate descent [27] as implemented in the scikit-contrib-

lightning module. The classifier in GimmeMotifs uses a l1/l2 penalty with squared hinge loss where

the alpha and C parameters are set using grid search in 10 fold cross-validation procedure.

The other four methods that are implemented relate motif score to an experimental measure such

as ChIP-seq or ATAC-seq signal or expression level. These are all different forms of regression. In

addition to ridge regression, which is similar to Motif Activity Response Analysis (MARA) [24,25],

these methods include regression using boosted trees (XGBoost [28]), multiclass regression [27]

and L1 regularized regression (LASSO).

Clustering to create the gimme.vertebrate.v5.0 motif

database

We collected all motifs from the following databases: CIS-BP v1.02 [12], ENCODE [4], Factorbook 

[3], HOCOMOCO v11 [5], HOMER v4.10 [6], JASPAR 2018 vertebrates [10] and SwissRegulon 

[13]. Motif similarity was calculated using Pearson correlation of motif scores profiles [64,65] using

a sequence that contains each 7-mer or its reverse complement [66]. We then clustered the motifs

using agglomerative clustering with complete linkage and connectivity constraints where only

motifs with a Pearson r >= 0.5 were considered as neighbors. The number of clusters was set to

1900. After clustering, we discarded all motifs were the sum of the information content of all

positions was less than 5. The clustered database, gimme.vertebrate.v5.0 , is distributed with

GimmeMotifs.



Transcription factor motif database benchmark

We downloaded all hg38 non-ENCODE ChIP-seq peaks from Remap 2018 v1.2 [16] (http://

tagc.univ-mrs.fr/remap/index.php?page=download). We removed all factors with fewer than 1000

peaks and created regions of 100 bp centered at the peak summit. Background files were created

for each peak set using bedtools shuffle [67], excluding the hg38 gaps and the peak regions. The

ROC AUC and Recall at 10% FDR statistics were calculated using gimme roc . The motif

databases included in the comparison are listed in Table 3. We only included public databases that

can be freely accessed and downloaded.

Table 3: Motif databases.

Name Version Citation

Factorbook Sep. 2012 [3]

SwissRegulon Nov. 2006 [13]

GimmeMotifs vertebrate v5.0

HOCOMOCO v11 [5]

Homer v4.10 [6]

JASPAR 2018 [10]

ENCODE Dec. 2013 [4]

Madsen 1.1 [15]

RSAT vertebrate clusters Sep. 2017 [14]

The workflow is implemented in snakemake [68] and is available at https://github.com/

vanheeringen-lab/gimme-analysis.

De novo  motif prediction benchmark

We downloaded all spp ENCODE peaks (January 2011 data freeze) from the EBI FTP (http://

ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/peaks/

jan2011/spp/optimal/). We selected the top 5000 peaks and created 100bp regions centered on the

peak summit. As background we selected 100 bp regions flanking the original peaks. For the 

de novo  motif search default settings for gimme motifs  were used. The workflow is

implemented in snakemake [68] and is available at https://github.com/vanheeringen-lab/gimme-

analysis.

http://tagc.univ-mrs.fr/remap/index.php?page=download
http://tagc.univ-mrs.fr/remap/index.php?page=download
http://www.factorbook.org/
http://swissregulon.unibas.ch/sr/swissregulon
https://gimmemotifs.readthedocs.io
http://hocomoco11.autosome.ru/
http://homer.ucsd.edu/homer/
https://jaspar.genereg.net/
http://compbio.mit.edu/encode-motifs/
http://bioinformatik.sdu.dk/solexa/webshare/IMAGE/IMAGE_v1.1.tar.gz
http://pedagogix-tagc.univ-mrs.fr/rsat/data/published_data/Castro_2016_matrix-clustering/
https://github.com/vanheeringen-lab/gimme-analysis
https://github.com/vanheeringen-lab/gimme-analysis
http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/peaks/jan2011/spp/optimal/
http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/peaks/jan2011/spp/optimal/
http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/peaks/jan2011/spp/optimal/
https://github.com/vanheeringen-lab/gimme-analysis
https://github.com/vanheeringen-lab/gimme-analysis


Motif analysis of hematopoietic enhancers

To illustrate the functionality of gimme maelstrom  we analyzed an integrated collection of

hematopoietic enhancers. We downloaded all H3K27ac ChIP-seq and DNase I data from

BLUEPRINT and hematopoietic DNase I data from ROADMAP (Supplementary Table S1). All

DNase I data were processed using the Kundaje lab DNase pipeline version 0.3.0 https://

github.com/kundajelab/atac_dnase_pipelines [69]. The ChIP-seq samples were processed using

the Kundaje lab AQUAS TF and histone ChIP-seq pipeline https://github.com/kundajelab/

chipseq_pipeline. For all experiments from BLUEPRINT we used the aligned reads provided by

EBI. All ROADMAP samples were aligned using bowtie2 [70] to the hg38 genome. DNase I peaks

were called using MACS2 [71] according to the default settings of the DNase pipeline. We merged

all DNase I peak files and centered each merged peak on the summit of the strongest individual

peak. H3K27ac reads were counted in a region of 2kb centered at the summit (Supplementary

Table S2) and read counts were log2-transformed and scaled. We removed all samples that were

treated and averaged all samples from the same cell type. We then selected all enhancers with at

least one sample with a scaled log2 read count of 2, sorted by the maximum difference in

normalized signal between samples and selected the 50,000 enhancers with the largest difference.

Using this enhancer collection as input, we ran gimme maelstrom  using default settings. The motif

analysis workflow is implemented in a Jupyter notebook and is available at https://github.com/

vanheeringen-lab/gimme-analysis.

Conclusions
We demonstrated the functionality of GimmeMotifs with three examples. First, to evaluate different

public motif databases, we quantified their performance on distinguishing ChIP-seq peaks from

background sequences. The databases that perform best on this benchmark are collections of

motifs from different sources. Of the individual databases HOCOMOCO and Factorbook rank

highest using this collection of human ChIP-seq peaks. Based on our results it is recommended to

use a composite database, such as the RSAT clustered motifs or the GimmeMotifs database

(v5.0), for the best vertebrate motif coverage. However, these motifs are less well annotated. For

instance, motifs based on ChIP-seq peaks from some sources might be from co-factors or cell

type-specific regulators instead of the factor that was assayed. An example are motifs that are

associated with the histone acetyl tranferase EP300. This transcriptional co-activator lacks a DNA

binding domain, and associated motifs depend on the cell type. For instance, in a lymphoblastoid

cell line such as GM12878 these include PU.1 and AP1. The lack of high-quality annotation makes

it more difficult to reliably link motifs to transcription factors. This can be a distinct advantage of a

database such as JASPAR. Although the motifs might not be optimal for every TF, JASPAR

contains high-quality metadata that is manually curated.

https://github.com/kundajelab/atac_dnase_pipelines
https://github.com/kundajelab/atac_dnase_pipelines
https://github.com/kundajelab/chipseq_pipeline
https://github.com/kundajelab/chipseq_pipeline
https://github.com/vanheeringen-lab/gimme-analysis
https://github.com/vanheeringen-lab/gimme-analysis


In the second example, we benchmarked 14 different de novo motif finders using a large

compendium of ChIP-seq data. While performance can vary between different data sets, there are

several de novo motif finders that consistently perform well, with BioProspector, MEME and Homer

as top performers. Interestingly, only Homer was specifically developed for ChIP-seq data. An

ensemble approach such as GimmeMotifs still improves on the use of individual tools. This

example also illustrates that newly developed de novo motif finders should be evaluated on many

different data sets, as this is necessary to accurately judge the performance.

Finally, we presented a new ensemble approach, maelstrom, to determine motif activity in two or

more epigenomic or transcriptomic data sets. Using H3K27ac ChIP-seq signal as a measure for

enhancer activity, we analyzed cell-type specific motif activity in a large collection of hematopoietic

cell types. We identified known lineage regulators, as well as motifs for factors that are less well

studied in a hematopoietic context. This illustrates how gimme maelstrom  can serve to identify

cell type-specific transcription factors and has the potential to discobver

In conclusion, GimmeMotifs is a flexible and highly versatile framework for transcription factor motif

analysis. Both command line and programmatic use in Python are supported. One planned future

improvement to GimmeMotifs is the support of more sophisticated motif models. Even though the

PFM is a convenient representation, it has certain limitations. A PFM cannot model inter-nucleotide

dependencies, which are known to affect binding of certain TFs. Multiple different representations

have been proposed [72,73,74,75,76], but no single one of these has gained much traction. It is

still unclear how well these models perform and their use depends on specific tools. Supporting

these different models and benchmarking their performance relative to high-quality PFMs will

simplify their use and give insight into their benefits and disadvantages. Second, there is significant

progress recently in modeling TF binding using deep neural networks (DNNs) [77,78]. These DNNs

can learn sequence motifs, as well as complex inter-dependencies, directly from the data.

However, while biological interpretation is possible [79], it becomes less straightforward. We expect

that analyzing and understanding a trained DNN can benefit from high-quality motif databases and

comparative tools such as GimmeMotifs.

Availability and requirements

• Project name: GimmeMotifs

• Project home page: https://github.com/vanheeringen-lab/gimmemotifs

• Operating system(s): Linux, Mac OSX

• Programming language: Python 3

• Other requirements: de novo motif finders

• License: MIT

https://github.com/vanheeringen-lab/gimmemotifs


Availability of supporting data

• Scripts and notebooks to reproduce the analysis are available at: 

◦ https://github.com/vanheeringen-lab/gimme-analyis.

• Additonal data files are available at Zenodo: 

◦ Table of H3K27ac read counts at all DNase I accessible sites: 10.5281/zenodo.1488669.

◦ Results of gimme maelstrom (Figure 3 and 4): 10.5281/zenodo.1491482.

Additional files

• Supplementary Table S1: List of accessions used in the analysis of hematopoietic enhancers.

• Supplementary Table S2: Table of H3K27ac read counts at all DNase I accessible sites.

• Supplementary File S1: Results of gimme maelstrom (Figure 3 and 4).
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